Управление образования администрации города Тулы МБОУ ЦО № 13 им. Е, Н. Волкова

РАССМОТРЕНО	ОТКНИЧП	УТВЕРЖДАЮ
методическим	педагогическим	Директор
объединением	советом МБОУ ЦО	Кучина
Л.А.		
учителей естественно-	№ 13 им. Е.Н. Волкова	
математического цикла	Протокол № 5	Приказ № 112-1
Тимошина Ю.Н.	от 29.08.2024 г.	от 29.08.2024 г.
Протокол № 5		
от 29.08.2024 г.		

РАБОЧАЯ ПРОГРАММА элективного курса «Подготовка к ЕГЭ по физике: теория и практика»

(название программы)

для 11 класса среднего общего образования 2024-2025 учебный год

Возрастная группа: 16-17 лет

Составитель: Сорокина Е.В. учитель физики

Пояснительная записка

В изучении курса физики решение задач имеет исключительно большое значение, и им отводится значительная часть курса. Физические задачи выступают действенным средством формирования основополагающих физических знаний и учебных умений, дают необходимый материал для понимания и запоминания основных законов и формул, развивают навыки в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение. Процесс решения задач служит одним из средств овладения системой научных знаний курса физики. Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения. К у р с охватывает разделы физики за 10 и 11 классов, что дает возможность качественно подготовиться к сдаче ЕГЭ по физике.

Рабочая программа элективного курса по физике для 11 класса разработана на основе: — Федерального компонента государственного образовательного стандарта;

– Примерной программы по физике для **старшей школы** под редакцией Г.Я. Мякишева; Рабочая программа элективного курса по физике ориентирована на использование УМК Г.Я. Мякишева, утвержденного Федеральным перечнем учебников.

Физика: Учебник для 11 кл. – Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин; под ред. Н.А. Парфентьевой. М.Просвещение.

Рабочая программа внеурочных занятий по физике для 11 класса (согласно учебному плану) рассчитана на 34 ч.

Направлена на реализацию следующих целей и задач:

Цель программы: обеспечить дополнительную поддержку учащихся 11 классов для сдачи ЕГЭ по физике

Задачи:

- развитие интереса к физике и решению физических задач;
- подготовить учащихся к сдаче ЕГЭ по физике;
- совершенствование полученных в основном курсе знаний и умений;
- формирование представлений о постановке, классификации, приемах и методах решения школьных физических задач.
- развивать интеллектуальные способности и познавательные интересы школьников в процессе изучения физики;
- уделять основное внимание не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира;
- ставить проблемы, требующие от обучающихся самостоятельной деятельности по их разрешению.

Методические особенности изучения курса

Курс опирается на знания, полученные при изучении курса физики на базовом уровне. Основное средство и цель его освоения - решение задач. Лекции предназначены не для сообщения новых знаний, а для повторения теоретических основ, необходимых для выполнения практических заданий, поэтому носят обзорный характер при минимальном объеме математических выкладок. Теоретический материал удобнее обобщить в виде таблиц, форму которых может предложить учитель, а заполнить их должен ученик самостоятельно. Ввиду предельно ограниченного времени, отводимого на прохождение курса, его эффективность будет определяться именно самостоятельной работой ученика, для которой потребуется не менее 3-4 ч в неделю.

В процессе обучения важно фиксировать внимание обучаемых на выборе и разграничении физической и математической модели рассматриваемого явления, отработать стандартные алгоритмы решения физических задач в стандартных ситуациях и в измененных или новых ситуациях. При решении задач рекомендуется широко использовать аналогии, графические методы, физический эксперимент. Экспериментальные задачи включают в соответствующие разделы. При отсутствии в школе необходимой технической поддержки эксперимента рекомендуется использовать электронные пособия.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА ВНЕУРОЧНОЙ ДЕЯТЕЛЬНОСТИ

Занятия в рамках программы направлены на обеспечение достижений обучающимися следующих личностных, метапредметных и предметных образовательных результатов.

Личностные результаты

- готовность к саморазвитию, самостоятельности и личностному самоопределению;
- осознание ценности самостоятельности и инициативы;
- наличие мотивации к целенаправленной учебной деятельности;
- проявление интереса к способам познания;
- стремление к самоизменению.

Метапредметные результаты

- способность их использовать в учебной, познавательной и социальной практике;
- готовность к самостоятельному планированию и осуществлению учебной деятельности и организации учебного сотрудничества с педагогическими работниками и сверстниками, к участию в построении индивидуальной образовательной траектории;
- способность организовать и реализовать собственную познавательную деятельность;
- способность к совместной деятельности;
- овладение навыками работы с информацией: восприятие и создание информационных текстов в различных форматах, в том числе цифровых, с учетом назначения информации и ее целевой аудитории.

Предметные результаты:

По выполнению программы обучающиеся должны знать:

- основные понятия физики
- основные законы физики
- вывод основных законов
- понятие инерции, закона инерции
- виды энергии
- разновидность протекания тока в различных средах
- состав атома
- закономерности, происходящие в газах, твердых, жидких телах

По выполнению программы обучающиеся должны уметь производить расчеты:

- производить расчеты по физическим формулам
- производить расчеты по определению координат тел для любого вида движения
- производить расчеты по определению теплового баланса тел
- решать качественные задачи
- решать графические задачи
- снимать все необходимые данные с графиков и производить необходимые расчеты
- писать ядерные реакции
- составлять уравнения движения
- по уравнению движения, при помощи производной, находить ускорение, скорость
- давать характеристики процессам происходящие в газах
- строить графики процессов
- описывать процессы при помощи уравнения теплового баланса
- применять закон сохранения механической энергии
- применять закон сохранения импульса
- делать выводы

Содержание программы

11 класс

(34 ч, 1 ч в неделю)

1. Введение – 1 ч

Контрольно-измерительные материалы, спецификация, кодификаторы экзамена

2. Эксперимент—1 ч

<u>Основы теории погрешностей.</u> Погрешности прямых измерений. Представление результатов измерений в форме таблиц и графиков.

3. Механика—7 ч

Статика. Момент силы. Условия равновесия тел. Гидростатика.

Движение тел со связями - приложение законов Ньютона.

Законы сохранения импульса и энергии

4. Молекулярная физика и термодинамика – 7 ч

Основное уравнение МКТ газов (Повторение)

<u>Первый закон термодинамики</u> и его применение для различных процессов изменения состояния системы. Термодинамика изменения агрегатных состояний веществ. Насыщенный пар.

Второй закон термодинамики. Расчет КПД тепловых двигателей и цикла Карно.

5. Электродинамика – 8 ч

<u>Магнитное поле.</u> Принцип суперпозиции магнитных полей. Силы Ампера и Лоренца. <u>Электромагнитная индукция.</u> Самоиндукция. Энергия магнитного поля.

6. Колебания и волны - 4 ч

Переменный ток.

Механические и электромагнитные волны.

7. Оптика - 4 ч

<u>Геометрическая оптика.</u> Закон отражения и преломления света. Построение изображений неподвижных и *движущихся* предметов в тонких линзах, плоских зеркалах.

<u>Волновая оптика.</u> Интерференция света, условия интерференционного максимума и минимума. Дифракция света. Дифракционная решетка. Дисперсия света.

8. Квантовая физика - 2 ч

Фотон. Давление света. Уравнение Эйнштейна для фотоэффекта.

<u>Применение постулатов Бора</u> для расчета линейчатых спектров излучения и поглощения энергии водородоподобными атомами.

<u>Атомное ядро.</u> Закон радиоактивного распада. Применение законов сохранения заряда, массового числа, задачи о ядерных превращениях.

Календарно-тематическое планирование

№	Тема	Вид занятия	Планируемые результаты	Дата	
урока		T.D.	(4)		
1 /1	TC		едение (1ч)	1	
1/1	Контрольно-	Лекция	Знать структуру КИМ,		
	измерительные		спецификацию, кодификаторы		
	материалы		экзамена		
2/1			перимент (1ч)	1	
2/1	Погрешности	Практическое	Уметь находить погрешности		
	измерений	занятие	прямых и косвенных измерений,		
			уметь представлять результаты		
		L	измерений в форме графиков таблиц		
	T ~		еханика (7 ч)	1	
3/1	Статика	Лекция	Уметь применять уравнение,		
			описывающее условие равновесия		
			тел с закрепленной осью вращения,		
			решать задачи о сообщающихся		
			сосудах, действии архимедовой силы.		
3/2	Статика	Практическое	Уметь применять уравнение,		
		занятие	описывающее условие равновесия		
			тел с закрепленной осью вращения,		
			решать задачи о сообщающихся		
			сосудах, действии архимедовой силы.		
4/3	Статика	Практическое	Уметь применять уравнение,		
		занятие	описывающее условие равновесия		
			тел с закрепленной осью вращения,		
			решать задачи о сообщающихся		
			сосудах, действии архимедовой силы.		
5/4	Движение тел со	Практическое	Уметь решать задачи на движение		
	связями	занятие	тел со связями, как приложение		
			законов Ньютона		
6/5	Движение тел со	Практическое	Уметь решать задачи на движение		
	связями	занятие	тел со связями, как приложение		
			законов Ньютона		
7/6	Движение тел со	Практическое	Уметь решать задачи на движение		
	связями	занятие	тел со связями, как приложение		
			законов Ньютона		
8/7	Движение тел со	Практическое	Уметь решать задачи на движение		
	связями	занятие	тел со связями, как приложение		
			законов Ньютона		
	IV. Молекулярная физика и термодинамика (7ч)				
9/1	Основы МКТ.	Лекция	Знать формулы основного уравнения		
	Газовые законы.		МКТ газов, средней кинетической		
			энергии поступательного движения		
			молекул газа, уравнения состояния		
			идеального газа, изопроцессов,		
			газовых законов		
10/2	Первый и второй	Лекция	Знать законы термодинамики и их		
	законы		применение для различных		

	тапмолицомич		процессор изменения состояния	
	термодинамики		процессов изменения состояния	
			идеального газа, изменение	
			агрегатных состояний веществ,	
			понятия насыщенный пар, расчет	
			КПД тепловых двигателей цикла	
1.1./0		Т.	Карно	
11/3	Основного	Практическое	Уметь решать задачи на применение	
	уравнения МКТ	занятие	основного уравнения МКТ газов,	
			формулы средней кинетической	
			энергии поступательного движения	
			молекул газа	
12/4	Vnonvovvo	Проитиноское	VMOTE POWER OF TOWN HE TRANSPORTED	
12/4	Уравнение	Практическое занятие	Уметь решать задачи на применение	
	состояния	занятис	уравнения состояния идеального	
12/5	идеального газа	П	газа, газовых законов	
13/5	Первый закон	Практическое	Уметь решать задачи на применение	
	термодинамики	занятие	первого закона термодинамики и его	
			применения для различных	
			процессов изменения состояния	
			системы, уметь находить работу газа	
			в представленных графиках, уметь	
			использовать уравнение теплового	
			баланса при решении задач на	
			изменение агрегатного состояния	
1.4/6	T.	Т.	вещества, решать графические задачи	
14/6	Тепловые	Практическое	Уметь решать задачи на расчет КПД	
1.5./7	двигатели	занятие	тепловых двигателей	
15/7	Насыщенный пар	Практическое	Уметь решать задачи на расчет	
		занятие	относительной и абсолютной	
			влажности, использовать в задачах	
			зависимость давления насыщенного	
		V Duotan	пара от температуры	
16/1	Магнитное поле,	Лекция	Знать понятия магнитное поле,	
10/1	индукция	лекции	принцип суперпозиции магнитных	
	підукция		полей, силы Ампера и Лоренца,	
			электромагнитной индукции,	
			самоиндукции, энергии магнитного	
			поля	
17/2	Магнитное поле.	Практическое	Уметь решать задачи на принцип	
1//2	Магнитная	занятие	суперпозиции полей, с применением	
		заплінс	правила правой руки (правило	
	индукция		правила правои руки (правило буравчика), на нахождение силы	
			Оуравчика), на нахождение силы Ампера и Лоренца (правило левой	
18/3	Магнитное поле.	Практическое	руки) Уметь решать задачи на принцип	
10/3	Магнитная	занятие	суперпозиции полей, с применением	
		запятис	правила правой руки (правило	
	индукция			
			буравчика), на нахождение силы	
			Ампера и Лоренца (правило левой	
19/4	Мариилиод ноло	Практиноског	руки)	
19/4	Магнитное поле.	Практическое	Уметь решать задачи на принцип	

1				
	Магнитная	занятие	суперпозиции полей, с применением	
	индукция		правила правой руки (правило	
			буравчика), на нахождение силы	
			Ампера и Лоренца (правило левой	
			руки)	
20/5	Магнитное поле.	Практическое	Уметь решать задачи на принцип	
	Магнитная	занятие	суперпозиции полей, с применением	
	индукция		правила правой руки (правило	
			буравчика), на нахождение силы	
			Ампера и Лоренца (правило левой	
			руки)	
21/6	Электромагнитная	Практическое	Уметь решать графические,	
21, 0	индукция	занятие	табличные, экспериментальные	
		300000000000000000000000000000000000000	задачи, задачи на возникновение	
			ЭДС индукции	
22/7	Электромагнитная	Практическое	Уметь решать графические,	
22/1	индукция	занятие	табличные, экспериментальные	
	индукция	занятис		
			задачи, задачи на возникновение	
			ЭДС индукции	
23/8	7	Пестинута	Vicens acres maderica	
23/8	Электромагнитная	Практическое	Уметь решать графические,	
	индукция	занятие	табличные, экспериментальные	
			задачи, задачи на возникновение	
			ЭДС индукции	
	T		ния и волны (4ч)	
24/1	Колебания и волны	Лекция	Знать понятия механические и	
			гармонические колебания и волны,	
			кинематику и динамику	
			механических колебаний, резонанс,	
			электромагнитных гармонических	
			колебаний, переменного тока	
25/2	Колебания и волны	Практическое	Уметь решать задачи на колебания	
		занятие		
26/3	Переменный ток	Практическое	Уметь решать задачи на применение	
		занятие	закона Ома в цепях переменного тока	
			с активным, индуктивным и	
			емкостным сопротивлениями	
27/4	Переменный ток	Практическое	Уметь решать задачи на применение	
		занятие	закона Ома в цепях переменного тока	
			с активным, индуктивным и	
			емкостным сопротивлениями	
		VII. Or	тика (4ч)	
28/1	Геометрическая и	Лекция	Знать понятия геометрической и	
	волновая оптика		волновой оптики, законы отражения	
			и преломления света, условия	
			интерференционного максимума и	
			минимума, дифракции света,	
			дифракционной решетки, дисперсии	
			света.	
			Уметь строить изображения	
			неподвижных предметов в тонких	
	1	I	- The things	

			линзах, плоских зеркалах	
29/2	Законы отражения	Практическое	Уметь решать задачи на применение	
	и преломления	занятие	законов отражения и преломления	
	света		света, в том числе на явление	
			полного внутреннего отражения	
30/3	Построение	Практическое	Уметь решать задачи на построение	
	изображений в	занятие	изображений неподвижных	
	линзах и плоских		предметов в плоских зеркалах и	
	зеркалах		тонких собирающих и рассеивающих	
			линзах (с применением формулы	
			тонкой линзы)	
31/4	Волновая оптика	Практическое	Уметь решать задачи на простейшие	
		занятие	случаи интерференции дифракции	
			света в дифракционной решетке	
		VIII. Квант	овая физика (2ч)	
32/1	Квантовая физика	Лекция	Знать понятия давления света, знать	
			уравнение Эйнштейна для	
			фотоэффекта, применение	
			постулатов Бора для расчета	
			линейчатых спектров излучения и	
			поглощения, атомное ядро, закон	
			радиоактивного распада, применение	
			законов сохранения заряда	
			,массового числа в задачах о ядерных	
			превращениях	
33/2	Квантовая физика	Практическое	Уметь решать задачи по	
		занятие	фотоэффекту с применением	
			уравнения Эйнштейна, применению	
			постулатов Бора, закона	
			радиоактивного распада, ядерным	
			превращениям (α- и β-распады,	
			ядерные реакции и термоядерные	
			реакции с применением законов	
			сохранения заряда и массового числа	